Deamidation of Cdc42 and Rac by Escherichia coli cytotoxic necrotizing factor 1: activation of c-Jun N-terminal kinase in HeLa cells.

نویسندگان

  • M Lerm
  • J Selzer
  • A Hoffmeyer
  • U R Rapp
  • K Aktories
  • G Schmidt
چکیده

Recently, Escherichia coli cytotoxic necrotizing factor 1 (CNF1) was shown to activate the low-molecular-mass GTPase RhoA by deamidation of Gln63, thereby inhibiting intrinsic and GTPase-activating protein (GAP)-stimulated GTPase activities (G. Schmidt, P. Sehr, M. Wilm, J. Selzer, M. Mann, and K. Aktories, Nature 387:725-729, 1997; G. Flatau, E. Lemichez, M. Gauthier, P. Chardin, S. Paris, C. Fiorentini, and P. Boquet, Nature 387:729-733, 1997). Here we report that in addition to RhoA, Cdc42 and Rac also are targets for CNF1 in vitro and in intact cells. Treatment of HeLa cells with CNF1 induced a transient formation of microspikes and formation of membrane ruffles. CNF1 caused a transient 10- to 50-fold increase in the activity of the c-Jun N-terminal kinase. Tryptic peptides of Cdc42 obtained from CNF1-treated cells by immunoprecipitation exhibited an increase in mass of 1 Da compared to control peptides, indicating the deamidation of glutamine 61 by the toxin. The same increase in mass was observed with the respective peptides obtained from CNF1-modified recombinant Cdc42 and Rac1. Modification of recombinant Cdc42 and Rac1 by CNF1 inhibited intrinsic and GAP-stimulated GTPase activities and retarded binding of 2'(3')-O-(N-methylanthraniloyl)GDP. The data suggest that recombinant as well as cellular Cdc42 and Rac are substrates for CNF1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Escherichia coli cytotoxic necrotizing factor 1 inhibits intestinal epithelial wound healing in vitro after mechanical injury.

Cytotoxic necrotizing factor type 1 (CNF1) from Escherichia coli activates the small GTP-binding proteins of the Rho family (Rho, Rac, and Cdc42) by catalyzing their deamidation at a specific glutamine residue. Since RhoA, Rac, and Cdc42 play a pivotal role in cell migration during the early phase of wound repair, we investigated whether CNF1 was able to interfere with wound healing in intestin...

متن کامل

Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1): Toxin Biology, in Vivo Applications and Therapeutic Potential

CNF1 is a protein toxin produced by certain pathogenic strains of Escherichia coli. It permanently activates the regulatory Rho, Rac, and Cdc42 GTPases in eukaryotic cells, by deamidation of a glutamine residue. This modification promotes new activities in cells, such as gene transcription, cell proliferation and survival. Since the Rho GTPases play a pivotal role also in several processes in v...

متن کامل

Increased Cell-Matrix Adhesion upon Constitutive Activation of Rho Proteins by Cytotoxic Necrotizing Factors from E. Coli and Y. Pseudotuberculosis

Cytotoxic necrotizing factors (CNFs) encompass a class of autotransporter toxins produced by uropathogenic E. coli (CNF1) or Y. pseudotuberculosis (CNFy). CNF toxins deamidate and thereby constitutively activate RhoA, Rac1, and Cdc42. In this study, the effects of CNF1 on cell-matrix adhesion are analysed using functional cell-adhesion assays. CNF1 strongly increased cell-matrix binding of susp...

متن کامل

The Rac-activating toxin cytotoxic necrotizing factor 1 oversees NK cell-mediated activity by regulating the actin/microtubule interplay.

The cell cytoskeleton is widely acknowledged as a master for NK cell function. Specifically, actin filaments guide the NK cell binding to target cells, engendering the formation of the so-called immunological synapse, while microtubules direct the killer behavior. All these cytoskeleton-dependent activities are competently governed by the Rho GTPases, a family of regulatory molecules encompassi...

متن کامل

Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation.

Hepatocyte growth factor (HGF), the ligand for the Met receptor tyrosine kinase, is a potent modulator of epithelial-mesenchymal transition and dispersal of epithelial cells, processes that play crucial roles in tumor development, invasion, and metastasis. Little is known about the Met-dependent proximal signals that regulate these events. We show that HGF stimulation of epithelial cells leads ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 67 2  شماره 

صفحات  -

تاریخ انتشار 1999